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1.0 Statement of the Problem Studied:

Optical fibers have the potential to increase by several orders of magnitude the
information carrying capacity of both civilian and military communication
networks. However, existing optical fiber communication systems fall far short
of this potential, in large measure because of the need to convert from optical to
electronic domains for many functions, e.g., multiplexing and demultiplexing.
One very attractive solution is to develop all-optical networks in which the
conversion from optical to electronic will take place only at the final user
terminal. Under this grant we have been developing technologies that will enable
the fabrication of components for all-optical networks.

The essential problem in fabrication of components for all-optical communication
networks is that the tools developed for the semiconductor industry are
inappropriate for the task. This is because of the requirement in optical
components for long-range spatial-phase coherence. In addition, 100nm and sub-
100nm features are required.

Under this grant we have developed techniques of spatial-phase-locked electron-
beam lithography (SPLEBL), x-ray nanolithography (XRN), and reactive-ion
etching (RIE) compatible with the requirements of long-range spatial-phase
coherence, and applied them to the fabrication of distributed-feedback (DFB)
lasers and high performance optical filters. This work has demonstrated the
efficacy of SPLEBL and XRN as applied to the specific problems of fabricating
components for all-optical networks.

2.0 Summary of Results:

As a result of the research carried out under this grant, we have laid the
foundation for an entirely new approach to high performance optoelectronic
components for all-optical networks utilizing wavelength-division multiplexing.
We have developed both the required nanofabrication technology and the basic
components. This work will be continued and expanded under DARPA
sponsored MURI funding. New grating-based components that promise even
higher performance than those described here have recently been conceived,
something that would not have occured except for this grant. These more
advanced components will be pursued under the MURI program which will
commence in early 1996.

2.1 Approach:

The techniques of optical lithography, interferometric lithography, electron-beam
lithography, and x-ray nanolithography were combined with reactive-ion etching
in ways that yielded the resolution, spatial coherence, geometric control, and
area coverage required by high performance optoelectronic components. Many
aspects of the above techniques are unique to the MIT Nanostructure Laboratory,




e.g., x-ray nanolithography, nanometer-precision x-ray mask alignment, and
spatial-phase-locked electron-beam lithography. The latter is a new paradigm
for such lithography that utilizes a fiducial grid, produced by interferometric
lithography, to ensure long-range spatial-phase coherence in electron beam
lithography. One of the objectives of our work was to develop methodologies
that would be compatible with future high-volume, low-cost manufacturing.

2.2 Research Vehicles:

As research vehicles to drive the development of advanced fabrication
technologies we chose to develop channel-dropping filters (CDF's) illustrated in
Fig. 1, and distributed feedback (DFB) lasers.

2.3 Optoelectronic Device Results:

Optical filters, consisting of quarter-wave-shifted distributed-Bragg gratings,
having a variety of resonance locations, and etched to a variety of depths in silica
ridge waveguides, were fabricated. This is illustrated in Fig. 2. These filters had
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the highest performance achieved anywhere in the world. The specific figures-of-
merit were: Q (greater than 40,000), resonance location (within 0.05 nm of
stopband center). Pass-band transmission characteristics followed theory to
better than a fraction of a dB, the limit of measurement capability. A number of
key technologies, described below, were perfected and combined to achieve this
result. Grating filters spanned up to 12 distinct fields of the e-beam lithography
system, yet the stitching error was less than 4 nm.

A variety of higher-order optical filters (Gaussian, Butterworth and Chebyshev)

were fabricated. These filters differed from those described above in that there
were several quarter-wave phase steps along the length of individual grating
filters, asindicated in Fig. 3. The performance of these higher-order filters,
illustrated in Fig. 4, was not as ideal as in the single-phase-step filters.
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Nevertheless this exercise demonstrated the effectiveness of our theoretical
models, and the general strategy.

2.4 Progress in Nanofabrication Technology Development:

(1)  We have developed a form of the spatial-phase-locked e-beam lithography
~ (SPLEBL), which we call the segmented fiducial grid, that has proven
effective down to the sub-nanometer domain, as shown in Fig. 5.

(2)  Patterns were written on x-ray nanolithograph masks using the SPLEBL
technique. The x-ray masks were then processed and used with our on-
axis interferometric mask alignment scheme to expose gratings in optical
waveguides. This process represents a significant advance over existing
technology in industry or other research labs. This advance is reflected in
the high performance of the optical filters.

(3)  Developed methods for reactive ion etching directly on x-ray mask
membranes. Helium backside cooling was used to avoid overheating and
promote anisotropic etching.

(4)  Developed methods of achieving side-coupled gratings immediately
adjacent to waveguides using ion implantation, x-ray lithography, and
reactive ion etching. These gratings are used in a novel DFB configuration
shown in Fig. 6. Gratings of 406 nm period, with 1 to 8 line-to-period
ratios, were etched in InP-based MBE-grown materials, as shown in Fig. 7.
X-ray lithography is particularly valuable in achieving such linewidth
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Ridge-Grating DFB Laser

Fig. 6 Schematic of distributed feedback
(DFB) laser configuration in which the
grating which provides feedback is

= adjacent to the ridge waveguide, thereby
— — avoiding the problem of overgrowth on a
= — = grating.
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Fig. 7 Lateral gratings defined adjacent to a 1.1-um-high InP/InGaA1As/InGaAsP ridge waveguide. The
grating has a period of 400 nm, which is appropriate for a second-order DFB laser at 1.3 pm. The silicon
dioxide damage mask serves both as an RIE etch mask as well as an ion implantation damage mask. (a)
Scanning electron micrograph of a 406-nm-period lateral grating exposed in PMMA by x-ray lithography;
(b) scanning electron micrograph of lateral gratings defined by CHy/H) RIE.
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